
Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

254-710-4846

W911NF-14-1-0479

66260-MA-II.1

Final Report

a. REPORT

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

15. SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17. LIMITATION OF
ABSTRACT

15. NUMBER
OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

05-01-2016 23-Sep-2014 22-Jun-2015

Approved for Public Release; Distribution Unlimited

Final Report: Computer-aided transformation of PDE models:
languages, representations, and a calculus of operations

A domain-specific embedded language called ibvp was developed to model initial-boundary value problems for
partial differential equations. As a (motivating) application, we developed tools to parse this language and generate
problem-specific input to the Proteus toolkit developed at ERDC.

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

numerical analysis, partial differential equations, domain-specific language

REPORT DOCUMENTATION PAGE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)
 ARO

8. PERFORMING ORGANIZATION REPORT
NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER
Robert Kirby

Robert Kirby, Andreas Kloeckner

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Baylor University
One Bear Place 97360

Waco, TX 76798 -7360

22-Jun-2015

ABSTRACT

Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

Final Report: Computer-aided transformation of PDE models: languages, representations, and a calculus of
operations

Report Title

A domain-specific embedded language called ibvp was developed to model initial-boundary value problems for partial differential
equations. As a (motivating) application, we developed tools to parse this language and generate problem-specific input to the Proteus
toolkit developed at ERDC.

(a) Papers published in peer-reviewed journals (N/A for none)

Enter List of papers submitted or published that acknowledge ARO support from the start of
the project to the date of this printing. List the papers, including journal references, in the
following categories:

(b) Papers published in non-peer-reviewed journals (N/A for none)

(c) Presentations

Received Paper

TOTAL:

Received Paper

TOTAL:

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts):

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):

0.00Number of Presentations:

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

(d) Manuscripts

Received Paper

TOTAL:

Received Paper

TOTAL:

Received Paper

TOTAL:

Books

Number of Manuscripts:

Patents Submitted

Patents Awarded

Awards

Graduate Students

Names of Post Doctorates

Received Book

TOTAL:

Received Book Chapter

TOTAL:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Faculty Supported

Names of Under Graduate students supported

Names of Personnel receiving masters degrees

Names of personnel receiving PHDs

Names of other research staff

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):
Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for

Education, Research and Engineering:
The number of undergraduates funded by your agreement who graduated during this period and intend to work

for the Department of Defense
The number of undergraduates funded by your agreement who graduated during this period and will receive

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period:

0.00

0.00

0.00

0.00

0.00

0.00

0.00

The number of undergraduates funded by this agreement who graduated during this period with a degree in
science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue
to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:......

......

......

......

......

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

National Academy Member
Robert C. Kirby 0.23

0.23

1

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

NAME

Total Number:

NAME

Total Number:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

......

......

Sub Contractors (DD882)

Inventions (DD882)

Scientific Progress

See Attachment

Technology Transfer

In collaboration/coordinate with Dr. Chris Kees in the Coastal Hydraulics Laboratory at ERDC,

we developed an open-source software project called ibvp.

It is freely available for download on github at:

https://github.com/ibvp/ibvp

Collaborate on the production of ibvp. In particular, the subcontract PI provided expertise in abstract syntax and symbolic manipulation in order to produce our domain-specific language

Collaborate on the production of ibvp. In particular, the subcontract PI provided expertise in abstract syntax and symbolic manipulation in order to produce our domain-specific language

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

University oF Illinois-Urbana Champagne

00000

12/18/14 12:00AM

6/21/15 12:00AM

University oF Illinois-Urbana Champagne

00000

12/18/14 12:00AM

6/21/15 12:00AM

1 a.

1 a.

Computer-aided transformation of PDE models: languages,

representations, and a calculus of operations

1 Vision and background

Physical and engineered systems described by partial differential equations (PDE) frequently
admit a range of models of varying complexity and fidelity. Additional features come through
the adding or modifying particular terms in the equations. Each such model in term could
be subject to any one of a number of reasonable discretizations. We maintain that what is
clear at the mathematical level should be equally clear in computation.

In this small STIR project, we separate the concerns of describing and discretizing such
models by defining an input language representing PDE, including steady-state and tran-
sient, linear and nonlinear, and so on. We then provide transformations acting on these to
determine structural information and/or convert the resulting abstract syntax into another
format, such as the input format of a solver code. We aim not to implement a new PDE
solver but instead to extend existing software projects by providing a smarter interface to
them.

Our fundamental contribution reverses the traditional process of scientific computing;
instead of computing the solution to a PDE to model a scientific process, we now model a
PDE itself as a computational object. Initial efforts at automating PDE solvers, such as [8, 9],
focused on the solvers themselves and particular families of discretizations (e. g. finite
elements), and now it is natural to complement their rapid growth and increasing maturity
by additional layers of automation, as begun here.

Unlike in linear algebra libraries such as [1, 2], providing a traditional library for PDE
would require enumerate every possible (combination of) equations of interest, a combina-
torially large task. On the other hand, one can model a rather large range of equations with
a small number of atoms (e.g. fields and differential operators) combined under grammati-
cal rules – differential operators acting on fields and added to or multiplied by other fields
algebraically. Successful domain-specific languages for PDE [8, 9] adopt such a grammatical
approach rather than merely a menu of pre-implemented differential equations. Still, such
projects present a language fundamentally limited only to finite element methods.

Our work then, builds on this development in numerical computing by putting forward
a further idea. While weak forms are naturally associated with finite element rather than
discretizations, we have developed a linguistic model for the natural strong form of PDE,
providing a common language that can be shared not only across disciplines, but also be-
tween different approaches to discretization. Importantly, our approach does not discard
the developments of previous decades, but provides an opportunity to build upon them in
important ways.

2 ibvp

Our work has led to the project ibvp (freely available under the MIT license at https:

//github.com/ibvp). This code builds on subcontractor Klöckner’s well-known pymbolic

1

https://github.com/ibvp
https://github.com/ibvp

package, which is a Python library for symbolic manipulation. Rather than a full-fledged
computer algebra system like sympy [5], pymbolic aims for extensibility into domain-specific
languages. In building ibvp, we have extended pymbolic’s set of primitives to include
things such as fields, differential operators (as tree nodes rather than actual differentiation),
normals, and boundary conditions and its mappers to work on the new nodes. This is best
presented through an example. Using ibvp, we are able to define the two-dimensional viscous
Burgers’ equation

ut +∇ ·
(
βu2

)
−∆u = 0,

where β = (1, 2)t by the Python code

import ibvp.sym as sym
ambient dim = 2

u = sym.Field(”u”)

vec = np.array ([1.0, 2.0])

eqns = sym.join(
sym.d dt(u)
+ sym.div(vec ∗ u∗∗2)
− sym.div(sym.grad(u))
)

This creates an abstract syntax tree that we can manipulate in any desired way. For this
project, we have concentrated on generating input for the Proteus toolkit [6] developed at
ERDC. Proteus itself provides a discretization-neutral strong-form interface, allowing users
to encode the coefficients and functional forms for a certain general class of convection-
diffusion-reaction systems. We developed code to parse an ibvp-defined PDE, match the
terms present against Proteus’ canonical form, and generate code for its Python interface.
For example, our code above gives rise to the Proteus code:

from proteus. TransportCoefficients import TC base

class Burgers(TC base):
def init (self):

mass = {0: {0: ’ linear ’}}
advection = {0: {0: ’ nonlinear ’}}
diffusion = {0: {0: {0: ’constant’}}}
potential = {0: {0: ’u’}}
reaction = {}
hamiltonian = {}
variableNames=[’u’]
TC base. init (self ,

nc=1,
mass=mass,
advection=advection,
diffusion =diffusion ,
potential =potential ,

2

reaction =reaction,
hamiltonian=hamiltonian,
variableNames=variableNames)

def evaluate(self , t , c):
u = c[(’u’ ,0)]
c [(’m’, 0)][:] = u
c[(’dm’, 0, 0)][:] = 1
c[(’ f ’ , 0)][..., 0] = u∗∗2
c[(’ f ’ , 0)][..., 1] = 2.0∗u∗∗2
c[(’ df ’ , 0, 0)][...,0] = 2∗u
c[(’ df ’ , 0, 0)][...,1] = 2.0∗2∗u
c[(’a’ , 0, 0)][..., 0, 0] = 1
c[(’a’ , 0, 0)][..., 1, 1] = 1

This provides a Python-level implementation for filling the appropriate coefficient arrays, as
well as meta-data indicating the kinds of dependencies. For example, note that the mass
matrix term is marked as ‘linear’, while the advection term is marked as ‘nonlinear’. This
information is determined automatically by ibvp from the PDE.

Proteus also provides a typically more efficient C-level interface for filling the coefficients.
Our code generator could readily be extended to write to this interface as well, replacing
the numpy-based Python code with loops to fill the arrays. Additionally, although it would
require substantial internal modifications to Proteus, we could generate code suitable for
GPUs or other accelerators.

We have also provided a very basic interface for specifying boundary conditions, typically
of Dirichlet or flux types, and generating approprate Proteus-level code for them. In the fu-
ture, we hope to enrich this feature to include descriptions of nonlinear boundary conditions,
such as when the type of boundary condition enforced depends on the system state.

3 Future perspective and potential impacts

We believe our approach will bring several benefits as the work continues. This kind of
interface should be immediately usable to anyone who has worked with PDE models math-
ematically and who has a minimal level of familiarity with computer algebra software.

A unified description of PDE models allows sharing between different numerical codes
supported by our transformations. This in turn facilities sharing of test, validation, and
benchmarking examples between different codes. This is particularly valuable as, in the
past, large amounts of effort have been spent assembling batteries of such test examples (e.g.
[11]) used for verification and validation. Our research could help introduce automation
into a process that previously required developers to manually re-code and re-discretize each
example. This would require mappings from our description language into other PDE codes,
a topic that is certainly of interest to us.

This work represents a new, multi-layered approach to domain-specific languages for
simulation. It is known that well-crafted tools greatly improve scientific productivity by
reducing development time and providing a medium for expression and interchange of ideas.

3

For example, numerical linear algebra is greatly simplified by high-level languages such as
MATLAB. The numerical solution of PDEs lies, conceptually, at an even higher level of
abstraction. As a result, domain-specific languages stand to have even greater benefit if the
right abstraction is found.

3.1 Future potential projects

It is the goal of a STIR project to stimulate future endeavors. The presence of a strong-
form PDE language provides a natural starting point for many potentially impactful future
projects.

3.1.1 Another canonical form: PyCLAW

Hyperbolic conservation laws, which are PDE of the form

ut +∇ · F (u) = f(x, t, u),

together with initial and boundary conditions, model a large class of important phenomena
including weather, climate, acoustics, and electromagnetics. Despite the varied applications,
similarities among the particular equations admit general families of methods, and this sim-
ilarity allows the development of general purpose finite volume solvers such as Clawpack [7].
Originally released in the 1990’s, Clawpack has been extended to support adaptive mesh
refinement. It also now supports large-scale distributed-memory parallelism behind a high-
level Python interface, called PyCLAW. It has been widely used in applications. Past ERDC
researcher Aron Ahmadia contributed heavily to the parallelization efforts.

By specifying the flux and source functions F and f , together with initial and boundary
condition, one neatly specifies a problem. A natural application of ibvp would be to match
a canonical form for conservation laws and generate appropriate modules for use with Claw-
pack. Working with the PyCLAW interface, we envision a just-in-time compiler that maps
from ibvp to massively parallel simulations.

3.1.2 Generation of weak forms

Finite element domain-specific languages such as FEniCS require practitioners, who may not
be trained in variational methods, to learn a new approach to formulating and expressing
PDE. Further, there is not a unique mapping from strong to weak form, given the wide wide
variety of mixed, discontinuous, stabilized, and other methods. This learning curve creates
opportunities for user error. Starting with ibvp, we envision automating the derivation of
weak forms by transformations of strong forms according to particular “recipes”. It is fairly
mechanical to obtain classic Galerkin methods – multiply by test functions and integrate
by parts. More delicately, one can perform this task elementwise to arrive at discontinuous
Galerkin formulations [4], perhaps parameterized over numerical flux functions. Alterna-
tively, one can encapsulate families of stabilized methods such as SUPG [3] by providing
transformations that add appropriate terms systematically in the presence of advection.

4

3.1.3 Additional Model Fidelity

To leverage corresponding advanced solver capabilities in current and future PDE technology,
and assuming success of this prototyping effort, we anticipate that there will be significant
Army interest in incorporating higher-fidelity, more detailed PDE models. These might
include models with at-rest or moving interfaces, multiple domains, multiple different physics,
level sets, as well as phase field and tracer particle models. In addition to augmenting the
input language, these features will enable new transformations and modes of reasoning.

Additional potential for fruitful research exists in the concise representation of efficiently
discretizable geometry, such by signed distance functions [10].

5

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz,
A. Greenbaum, S. Hammerling, A. Alan McKenney, et al. LAPACK Users’ guide,
volume 9. SIAM, 1999.

[2] S. Balay, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and H. Zhang. PETSc
Web page, 2014. URL http://www.mcs.anl.gov/petsc.

[3] A. Brooks and T. J. Hughes. Streamline upwind/Petrov-Galerkin formulations for con-
vection dominated flows with particular emphasis on the incompressible Navier-Stokes
equations. Computer Methods in Applied Mechanics and Engineering, 32(1):199–259,
1982.

[4] B. Cockburn, G. E. Karniadakis, and C.-W. Shu. Discontinuous Galerkin methods: the-
ory, computation and applications. Springer Publishing Company, Incorporated, 2011.

[5] D. Joyner, O. Čert́ık, A. Meurer, and B. E. Granger. Open source computer algebra
systems: SymPy. ACM Communications in Computer Algebra, 45(3/4):225–234, 2012.

[6] C. E. Kees and M. W. Farthing. Parallel computational methods and simulation for
coastal and hydraulic applications using the proteus toolkit. In Supercomputing11:
Proceedings of the PyHPC11 Workshop, 2011.

[7] R. J. Leveque. Clawpack: A software package for solving multi-dimensional conservation
laws. In Proc. 5th Intl. Conf. Hyperbolic Problems, pages 188–197. Citeseer, 1994.

[8] A. Logg, K.-A. Mardal, G. N. Wells, et al. Automated Solution of Differential Equations
by the Finite Element Method. Springer, 2012. ISBN 978-3-642-23098-1. doi: 10.1007/
978-3-642-23099-8.

[9] K. R. Long, R. C. Kirby, and B. van Bloemen Waanders. Unified embedded parallel
finite element computations via software-based fréchet differentiation. SIAM Journal
on Scientific Computing, 32(6):3323–3351, 2010.

[10] P.-O. Persson and G. Strang. A simple mesh generator in MATLAB. SIAM review, 46
(2):329–345, 2004.

[11] J. M. Stone. Athena test archive, 2014. URL http://www.astro.princeton.edu/

~jstone/Athena/tests/index.html. Retrieved May 19, 2014.

1

http://www.mcs.anl.gov/petsc
http://www.astro.princeton.edu/~jstone/Athena/tests/index.html
http://www.astro.princeton.edu/~jstone/Athena/tests/index.html

